Nuprl Lemma : strong-regular-int-seq_wf
∀[a,b:ℤ]. ∀[f:ℕ+ ⟶ ℤ].  (strong-regular-int-seq(a;b;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
strong-regular-int-seq: strong-regular-int-seq(a;b;f)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strong-regular-int-seq: strong-regular-int-seq(a;b;f)
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
subtract_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
addEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (strong-regular-int-seq(a;b;f)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-07_12_54
Last ObjectModification:
2017_09_20-PM-04_57_13
Theory : reals
Home
Index