Nuprl Lemma : strong-regular-int-seq_wf

[a,b:ℤ]. ∀[f:ℕ+ ⟶ ℤ].  (strong-regular-int-seq(a;b;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  strong-regular-int-seq: strong-regular-int-seq(a;b;f) nat_plus: + uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strong-regular-int-seq: strong-regular-int-seq(a;b;f) so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  all_wf nat_plus_wf le_wf absval_wf subtract_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality multiplyEquality hypothesisEquality setElimination rename applyEquality functionExtensionality addEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (strong-regular-int-seq(a;b;f)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-07_12_54
Last ObjectModification: 2017_09_20-PM-04_57_13

Theory : reals


Home Index