Nuprl Lemma : subinterval-riiint

[I:Interval]. I ⊆ (-∞, ∞


Proof




Definitions occuring in Statement :  subinterval: I ⊆  riiint: (-∞, ∞) interval: Interval uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subinterval: I ⊆  all: x:A. B[x] member: t ∈ T top: Top implies:  Q true: True prop:
Lemmas referenced :  member_riiint_lemma i-member_wf real_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality isectElimination hypothesisEquality

Latex:
\mforall{}[I:Interval].  I  \msubseteq{}  (-\minfty{},  \minfty{}) 



Date html generated: 2018_05_22-PM-02_05_48
Last ObjectModification: 2017_10_21-PM-11_01_05

Theory : reals


Home Index