Nuprl Lemma : subinterval-riiint
∀[I:Interval]. I ⊆ (-∞, ∞) 
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J 
, 
riiint: (-∞, ∞)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
subinterval: I ⊆ J 
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
member_riiint_lemma, 
i-member_wf, 
real_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}[I:Interval].  I  \msubseteq{}  (-\minfty{},  \minfty{}) 
Date html generated:
2018_05_22-PM-02_05_48
Last ObjectModification:
2017_10_21-PM-11_01_05
Theory : reals
Home
Index