Nuprl Lemma : subinterval-riiint
∀[I:Interval]. I ⊆ (-∞, ∞) 
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J , 
riiint: (-∞, ∞), 
interval: Interval, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
subinterval: I ⊆ J , 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
implies: P ⇒ Q, 
true: True, 
prop: ℙ
Lemmas referenced : 
member_riiint_lemma, 
i-member_wf, 
real_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality
Latex:
\mforall{}[I:Interval].  I  \msubseteq{}  (-\minfty{},  \minfty{})  
 Date html generated: 
2018_05_22-PM-02_05_48
 Last ObjectModification: 
2017_10_21-PM-11_01_05
Theory : reals
Home
Index