Nuprl Lemma : near-arcsine-exists-ext
∀a:{a:ℝ| a ∈ (r(-1), r1)} . ∀N:ℕ+.  (∃y:ℝ [(|y - arcsine(a)| ≤ (r1/r(N)))])
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
rooint: (l, u), 
i-member: r ∈ I, 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
squash: ↓T, 
or: P ∨ Q, 
guard: {T}, 
prop: ℙ, 
has-value: (a)↓, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
strict4: strict4(F), 
uimplies: b supposing a, 
top: Top, 
so_apply: x[s1;s2;s3;s4], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
uall: ∀[x:A]. B[x], 
sq_stable__rless, 
by-nearby-cases-ext, 
near-arcsine-exists, 
int-rdiv: (a)/k1, 
int-to-real: r(n), 
bfalse: ff, 
it: ⋅, 
btrue: tt, 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
quick-find: quick-find(p;n), 
rlessw: rlessw(x;y), 
member: t ∈ T
Lemmas referenced : 
lifting-strict-less, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-callbyvalue, 
near-arcsine-exists, 
sq_stable__rless, 
by-nearby-cases-ext
Rules used in proof : 
because_Cache, 
inlFormation, 
imageElimination, 
imageMemberEquality, 
inrFormation, 
applyExceptionCases, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueApply, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqleReflexivity, 
callbyvalueReduce, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a:\{a:\mBbbR{}|  a  \mmember{}  (r(-1),  r1)\}  .  \mforall{}N:\mBbbN{}\msupplus{}.    (\mexists{}y:\mBbbR{}  [(|y  -  arcsine(a)|  \mleq{}  (r1/r(N)))])
Date html generated:
2018_05_22-PM-03_07_57
Last ObjectModification:
2018_05_20-PM-11_35_55
Theory : reals_2
Home
Index