Nuprl Lemma : cat-isomorphic_inversion

C:SmallCategory. ∀a,b:cat-ob(C).  (cat-isomorphic(C;a;b)  cat-isomorphic(C;b;a))


Proof




Definitions occuring in Statement :  cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q cat-isomorphic: cat-isomorphic(C;x;y) exists: x:A. B[x] cat-isomorphism: cat-isomorphism(C;x;y;f) and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] cand: c∧ B
Lemmas referenced :  cat-isomorphic_wf cat-ob_wf small-category_wf cat-inverse_wf cat-isomorphism_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis dependent_pairFormation independent_pairFormation productEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}a,b:cat-ob(C).    (cat-isomorphic(C;a;b)  {}\mRightarrow{}  cat-isomorphic(C;b;a))



Date html generated: 2017_01_09-AM-09_11_32
Last ObjectModification: 2017_01_08-PM-01_18_53

Theory : small!categories


Home Index