Nuprl Lemma : cat-isomorphic_inversion
∀C:SmallCategory. ∀a,b:cat-ob(C).  (cat-isomorphic(C;a;b) 
⇒ cat-isomorphic(C;b;a))
Proof
Definitions occuring in Statement : 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
exists: ∃x:A. B[x]
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
cat-isomorphic_wf, 
cat-ob_wf, 
small-category_wf, 
cat-inverse_wf, 
cat-isomorphism_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality
Latex:
\mforall{}C:SmallCategory.  \mforall{}a,b:cat-ob(C).    (cat-isomorphic(C;a;b)  {}\mRightarrow{}  cat-isomorphic(C;b;a))
Date html generated:
2017_01_09-AM-09_11_32
Last ObjectModification:
2017_01_08-PM-01_18_53
Theory : small!categories
Home
Index