Nuprl Lemma : cat-isomorphic_wf

[C:SmallCategory]. ∀[x,y:cat-ob(C)].  (cat-isomorphic(C;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cat-isomorphic: cat-isomorphic(C;x;y) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf cat-arrow_wf cat-isomorphism_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].    (cat-isomorphic(C;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2017_01_09-AM-09_11_27
Last ObjectModification: 2017_01_08-PM-01_07_56

Theory : small!categories


Home Index