Nuprl Lemma : comma-slice-cat_wf

[A,C:SmallCategory]. ∀[S:Functor(A;C)]. ∀[x:cat-ob(C)].  ((S ↓ x) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  comma-slice-cat: (S ↓ x) cat-functor: Functor(C1;C2) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T comma-slice-cat: (S ↓ x)
Lemmas referenced :  comma-cat_wf unit-cat_wf const-functor_wf cat-ob_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A,C:SmallCategory].  \mforall{}[S:Functor(A;C)].  \mforall{}[x:cat-ob(C)].    ((S  \mdownarrow{}  x)  \mmember{}  SmallCategory)



Date html generated: 2017_01_19-PM-02_56_34
Last ObjectModification: 2017_01_13-PM-04_49_15

Theory : small!categories


Home Index