Nuprl Lemma : comma-cat_wf
∀[A,B,C:SmallCategory]. ∀[S:Functor(A;C)]. ∀[T:Functor(B;C)].  ((S ↓ T) ∈ SmallCategory)
Proof
Definitions occuring in Statement : 
comma-cat: (S ↓ T)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
comma-cat: (S ↓ T)
, 
spreadn: spread3, 
pi2: snd(t)
, 
pi1: fst(t)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v])
, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
cat-square-commutes: x_y1 o y1_z = x_y2 o y2_z
Lemmas referenced : 
cat-functor_wf, 
small-category_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor-ob_wf, 
equal_wf, 
cat-comp_wf, 
functor-arrow_wf, 
set_wf, 
mk-cat_wf, 
cat-id_wf, 
squash_wf, 
true_wf, 
functor-arrow-id, 
cat-comp-ident2, 
cat-comp-ident1, 
iff_weakening_equal, 
cat-comp-assoc, 
functor-arrow-comp, 
and_wf, 
cat-square-commutes-comp, 
cat-square-commutes_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
productEquality, 
applyEquality, 
productElimination, 
setEquality, 
lambdaFormation, 
setElimination, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairEquality, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
equalityUniverse, 
levelHypothesis, 
applyLambdaEquality, 
functionEquality, 
hyp_replacement
Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[S:Functor(A;C)].  \mforall{}[T:Functor(B;C)].    ((S  \mdownarrow{}  T)  \mmember{}  SmallCategory)
Date html generated:
2017_10_05-AM-00_50_30
Last ObjectModification:
2017_07_28-AM-09_20_25
Theory : small!categories
Home
Index