Nuprl Lemma : const-functor_wf

[A,B:SmallCategory]. ∀[a:cat-ob(A)].  (const-functor(A;a) ∈ Functor(B;A))


Proof




Definitions occuring in Statement :  const-functor: const-functor(A;a) cat-functor: Functor(C1;C2) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T const-functor: const-functor(A;a) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uimplies: supposing a all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-functor_wf cat-ob_wf cat-id_wf cat-arrow_wf equal_wf squash_wf true_wf cat-comp-ident1 iff_weakening_equal small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality because_Cache hypothesis applyEquality independent_isectElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[A,B:SmallCategory].  \mforall{}[a:cat-ob(A)].    (const-functor(A;a)  \mmember{}  Functor(B;A))



Date html generated: 2017_10_05-AM-00_45_58
Last ObjectModification: 2017_07_28-AM-09_19_12

Theory : small!categories


Home Index