Nuprl Lemma : const-functor_wf
∀[A,B:SmallCategory]. ∀[a:cat-ob(A)]. (const-functor(A;a) ∈ Functor(B;A))
Proof
Definitions occuring in Statement :
const-functor: const-functor(A;a)
,
cat-functor: Functor(C1;C2)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
const-functor: const-functor(A;a)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
mk-functor_wf,
cat-ob_wf,
cat-id_wf,
cat-arrow_wf,
equal_wf,
squash_wf,
true_wf,
cat-comp-ident1,
iff_weakening_equal,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
because_Cache,
hypothesis,
applyEquality,
independent_isectElimination,
lambdaFormation,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
dependent_functionElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination,
axiomEquality,
isect_memberEquality
Latex:
\mforall{}[A,B:SmallCategory]. \mforall{}[a:cat-ob(A)]. (const-functor(A;a) \mmember{} Functor(B;A))
Date html generated:
2017_10_05-AM-00_45_58
Last ObjectModification:
2017_07_28-AM-09_19_12
Theory : small!categories
Home
Index