Nuprl Lemma : discrete-cat_wf

[X:Type]. (discrete-cat(X) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  discrete-cat: discrete-cat(X) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-cat: discrete-cat(X) so_lambda: λ2y.t[x; y] prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] subtype_rel: A ⊆B unit: Unit so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) uimplies: supposing a implies:  Q so_apply: x[s1;s2;s3;s4;s5] all: x:A. B[x] and: P ∧ Q cand: c∧ B it:
Lemmas referenced :  mk-cat_wf equal_wf it_wf member_wf equal-wf-base equal_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache hypothesis applyEquality equalityElimination axiomEquality intEquality natural_numberEquality baseClosed independent_isectElimination lambdaFormation equalityTransitivity independent_pairFormation equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (discrete-cat(X)  \mmember{}  SmallCategory)



Date html generated: 2017_10_05-AM-00_45_35
Last ObjectModification: 2017_07_28-AM-09_18_57

Theory : small!categories


Home Index