Nuprl Lemma : is-nat-trans

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[trans:A:cat-ob(C) ⟶ (cat-arrow(D) (F A) (G A))].
  trans ∈ nat-trans(C;D;F;G) 
  supposing ∀A,B:cat-ob(C). ∀g:cat-arrow(C) B.
              ((cat-comp(D) (F A) (G A) (G B) (trans A) (G g))
              (cat-comp(D) (F A) (F B) (G B) (F g) (trans B))
              ∈ (cat-arrow(D) (F A) (G B)))


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat-trans: nat-trans(C;D;F;G) all: x:A. B[x]
Lemmas referenced :  cat-ob_wf cat-arrow_wf functor-ob_wf cat-comp_wf functor-arrow_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis dependent_set_memberEquality_alt hypothesisEquality sqequalRule functionIsType universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache applyEquality equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[trans:A:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(D)  (F  A)  (G  A))].
    trans  \mmember{}  nat-trans(C;D;F;G) 
    supposing  \mforall{}A,B:cat-ob(C).  \mforall{}g:cat-arrow(C)  A  B.
                            ((cat-comp(D)  (F  A)  (G  A)  (G  B)  (trans  A)  (G  A  B  g))
                            =  (cat-comp(D)  (F  A)  (F  B)  (G  B)  (F  A  B  g)  (trans  B)))



Date html generated: 2019_10_31-AM-07_24_02
Last ObjectModification: 2018_12_13-AM-09_45_27

Theory : small!categories


Home Index