Nuprl Lemma : monad-fun_wf

[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (M(x) ∈ cat-ob(C))


Proof




Definitions occuring in Statement :  monad-fun: M(x) cat-monad: Monad(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  monad-fun: M(x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-monad_wf cat-ob_wf monad-functor_wf functor-ob_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (M(x)  \mmember{}  cat-ob(C))



Date html generated: 2017_01_19-PM-02_58_07
Last ObjectModification: 2017_01_17-AM-11_32_46

Theory : small!categories


Home Index