Nuprl Lemma : cat-monad_wf

[C:SmallCategory]. (Monad(C) ∈ Type)


Proof




Definitions occuring in Statement :  cat-monad: Monad(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: and: P ∧ Q id_functor: 1 so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top all: x:A. B[x] functor-comp: functor-comp(F;G) nat-trans: nat-trans(C;D;F;G) spreadn: spread3 member: t ∈ T cat-monad: Monad(C) uall: [x:A]. B[x]
Lemmas referenced :  functor-arrow_wf cat-id_wf cat-comp_wf functor-ob_wf cat-arrow_wf equal_wf cat-ob_wf all_wf arrow_mk_functor_lemma ob_mk_functor_lemma functor-comp_wf id_functor_wf nat-trans_wf cat-functor_wf small-category_wf
Rules used in proof :  functionExtensionality because_Cache applyEquality lambdaEquality voidEquality voidElimination isect_memberEquality dependent_functionElimination rename setElimination sqequalRule productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution productEquality hypothesis extract_by_obid introduction cut setEquality isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  (Monad(C)  \mmember{}  Type)



Date html generated: 2017_01_19-PM-02_57_46
Last ObjectModification: 2017_01_16-PM-07_38_47

Theory : small!categories


Home Index