Nuprl Lemma : cat-monad_wf
∀[C:SmallCategory]. (Monad(C) ∈ Type)
Proof
Definitions occuring in Statement : 
cat-monad: Monad(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
and: P ∧ Q
, 
id_functor: 1
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
all: ∀x:A. B[x]
, 
functor-comp: functor-comp(F;G)
, 
nat-trans: nat-trans(C;D;F;G)
, 
spreadn: spread3, 
member: t ∈ T
, 
cat-monad: Monad(C)
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
functor-arrow_wf, 
cat-id_wf, 
cat-comp_wf, 
functor-ob_wf, 
cat-arrow_wf, 
equal_wf, 
cat-ob_wf, 
all_wf, 
arrow_mk_functor_lemma, 
ob_mk_functor_lemma, 
functor-comp_wf, 
id_functor_wf, 
nat-trans_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
functionExtensionality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
rename, 
setElimination, 
sqequalRule, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
productEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
setEquality, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  (Monad(C)  \mmember{}  Type)
Date html generated:
2017_01_19-PM-02_57_46
Last ObjectModification:
2017_01_16-PM-07_38_47
Theory : small!categories
Home
Index