Nuprl Lemma : monad-functor_wf

[C:SmallCategory]. ∀[M:Monad(C)].  (monad-functor(M) ∈ Functor(C;C))


Proof




Definitions occuring in Statement :  monad-functor: monad-functor(M) cat-monad: Monad(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  top: Top all: x:A. B[x] uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B cat-monad: Monad(C) monad-functor: monad-functor(M) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-monad_wf top_wf functor-comp_wf id_functor_wf nat-trans_wf subtype_rel_product cat-functor_wf pi1_wf_top
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality voidEquality voidElimination isect_memberEquality lambdaFormation independent_isectElimination because_Cache productEquality lambdaEquality applyEquality rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (monad-functor(M)  \mmember{}  Functor(C;C))



Date html generated: 2017_01_19-PM-02_57_58
Last ObjectModification: 2017_01_17-AM-11_29_21

Theory : small!categories


Home Index