Nuprl Lemma : monad-unit_wf
∀[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (monad-unit(M;x) ∈ cat-arrow(C) x M(x))
Proof
Definitions occuring in Statement : 
monad-unit: monad-unit(M;x)
, 
monad-fun: M(x)
, 
cat-monad: Monad(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
all: ∀x:A. B[x]
, 
id_functor: 1
, 
monad-functor: monad-functor(M)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
monad-fun: M(x)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-monad: Monad(C)
, 
monad-unit: monad-unit(M;x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-monad_wf, 
cat-ob_wf, 
arrow_mk_functor_lemma, 
ob_mk_functor_lemma
Rules used in proof : 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isectElimination, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (monad-unit(M;x)  \mmember{}  cat-arrow(C)  x  M(x))
Date html generated:
2017_01_19-PM-02_58_14
Last ObjectModification:
2017_01_17-AM-11_46_50
Theory : small!categories
Home
Index