Nuprl Lemma : open-union_wf
∀[X:Type]. ∀[A:ℕ ⟶ Open(X)].  (open-union(n.A[n]) ∈ Open(X))
Proof
Definitions occuring in Statement : 
open-union: open-union(n.A[n])
, 
Open: Open(X)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
open-union: open-union(n.A[n])
, 
Open: Open(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sp-lub_wf, 
Open_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Open(X)].    (open-union(n.A[n])  \mmember{}  Open(X))
Date html generated:
2019_10_31-AM-07_18_54
Last ObjectModification:
2015_12_28-AM-11_20_55
Theory : synthetic!topology
Home
Index