Nuprl Lemma : open-union_wf

[X:Type]. ∀[A:ℕ ⟶ Open(X)].  (open-union(n.A[n]) ∈ Open(X))


Proof




Definitions occuring in Statement :  open-union: open-union(n.A[n]) Open: Open(X) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T open-union: open-union(n.A[n]) Open: Open(X) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  sp-lub_wf Open_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Open(X)].    (open-union(n.A[n])  \mmember{}  Open(X))



Date html generated: 2019_10_31-AM-07_18_54
Last ObjectModification: 2015_12_28-AM-11_20_55

Theory : synthetic!topology


Home Index