Nuprl Lemma : sp-lub_wf

[A:ℕ ⟶ Sierpinski]. (lub(n.A[n]) ∈ Sierpinski)


Proof




Definitions occuring in Statement :  sp-lub: lub(n.A[n]) Sierpinski: Sierpinski nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q Sierpinski: Sierpinski subtype_rel: A ⊆B
Lemmas referenced :  quotient-function-subtype nat_wf set_subtype_base le_wf int_subtype_base bool_wf iff_wf equal_wf Sierpinski-bottom_wf two-class-equiv-rel sp-lub_wf1 Sierpinski_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality functionEquality independent_functionElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Sierpinski].  (lub(n.A[n])  \mmember{}  Sierpinski)



Date html generated: 2019_10_31-AM-06_36_01
Last ObjectModification: 2015_12_28-AM-11_21_20

Theory : synthetic!topology


Home Index