Nuprl Lemma : sp-lub_wf
∀[A:ℕ ⟶ Sierpinski]. (lub(n.A[n]) ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-lub: lub(n.A[n])
, 
Sierpinski: Sierpinski
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
Sierpinski: Sierpinski
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
quotient-function-subtype, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bool_wf, 
iff_wf, 
equal_wf, 
Sierpinski-bottom_wf, 
two-class-equiv-rel, 
sp-lub_wf1, 
Sierpinski_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
functionEquality, 
independent_functionElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Sierpinski].  (lub(n.A[n])  \mmember{}  Sierpinski)
Date html generated:
2019_10_31-AM-06_36_01
Last ObjectModification:
2015_12_28-AM-11_21_20
Theory : synthetic!topology
Home
Index