Nuprl Lemma : sp-lub_wf1
∀[B:f,g:ℕ ⟶ ℕ ⟶ 𝔹//fun-equiv(ℕ;a,b.↓a = ⊥ ∈ (ℕ ⟶ 𝔹) 
⇐⇒ b = ⊥ ∈ (ℕ ⟶ 𝔹);f;g)]. (lub(n.B[n]) ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-lub: lub(n.A[n])
, 
Sierpinski: Sierpinski
, 
Sierpinski-bottom: ⊥
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
Sierpinski: Sierpinski
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
sp-lub: lub(n.A[n])
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
false: False
, 
guard: {T}
Lemmas referenced : 
fun-equiv-rel, 
nat_wf, 
bool_wf, 
squash_wf, 
iff_wf, 
equal-wf-T-base, 
equiv_rel_squash, 
two-class-equiv-rel, 
Sierpinski-bottom_wf, 
quotient_wf, 
quotient-member-eq, 
coded-pair_wf, 
equal_wf, 
equal-Sierpinski-bottom, 
all_wf, 
not_wf, 
assert_wf, 
fun-equiv_wf, 
equal-wf-base, 
code-pair_wf, 
assert_functionality_wrt_uiff, 
coded-code-pair
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
independent_functionElimination, 
isect_memberFormation, 
pointwiseFunctionalityForEquality, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
productEquality, 
lambdaFormation, 
spreadEquality, 
independent_pairEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
addLevel, 
allFunctionality, 
imageElimination, 
impliesFunctionality, 
functionExtensionality, 
imageMemberEquality, 
levelHypothesis, 
promote_hyp, 
voidElimination, 
axiomEquality
Latex:
\mforall{}[B:f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}//fun-equiv(\mBbbN{};a,b.\mdownarrow{}a  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  b  =  \mbot{};f;g)].  (lub(n.B[n])  \mmember{}  Sierpinski)
Date html generated:
2019_10_31-AM-06_36_00
Last ObjectModification:
2017_07_28-AM-09_12_02
Theory : synthetic!topology
Home
Index