Nuprl Lemma : equal-Sierpinski-bottom
∀[x:ℕ ⟶ 𝔹]. uiff(x = ⊥ ∈ (ℕ ⟶ 𝔹);∀n:ℕ. (¬↑(x n)))
Proof
Definitions occuring in Statement : 
Sierpinski-bottom: ⊥, 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
apply: f a, 
function: x:A ⟶ B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
Sierpinski-bottom: ⊥, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
bfalse_wf, 
top_wf, 
nat_wf, 
assert_functionality_wrt_uiff, 
not_wf, 
equal_wf, 
bool_wf, 
iff_imp_equal_bool, 
false_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
addLevel, 
impliesFunctionality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  uiff(x  =  \mbot{};\mforall{}n:\mBbbN{}.  (\mneg{}\muparrow{}(x  n)))
Date html generated:
2019_10_31-AM-06_35_16
Last ObjectModification:
2015_12_28-AM-11_21_54
Theory : synthetic!topology
Home
Index