Nuprl Lemma : equal-Sierpinski-bottom
∀[x:ℕ ⟶ 𝔹]. uiff(x = ⊥ ∈ (ℕ ⟶ 𝔹);∀n:ℕ. (¬↑(x n)))
Proof
Definitions occuring in Statement : 
Sierpinski-bottom: ⊥
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
Sierpinski-bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
bfalse_wf, 
top_wf, 
nat_wf, 
assert_functionality_wrt_uiff, 
not_wf, 
equal_wf, 
bool_wf, 
iff_imp_equal_bool, 
false_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
addLevel, 
impliesFunctionality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  uiff(x  =  \mbot{};\mforall{}n:\mBbbN{}.  (\mneg{}\muparrow{}(x  n)))
Date html generated:
2019_10_31-AM-06_35_16
Last ObjectModification:
2015_12_28-AM-11_21_54
Theory : synthetic!topology
Home
Index