Nuprl Lemma : sp-le-top

[x:Sierpinski]. x ≤ ⊤


Proof




Definitions occuring in Statement :  sp-le: x ≤ y Sierpinski: Sierpinski Sierpinski-top: uall: [x:A]. B[x]
Definitions unfolded in proof :  sp-le: x ≤ y uall: [x:A]. B[x] member: t ∈ T implies:  Q prop:
Lemmas referenced :  equal-wf-T-base Sierpinski_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation equalityTransitivity equalitySymmetry hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality baseClosed lambdaEquality dependent_functionElimination axiomEquality because_Cache

Latex:
\mforall{}[x:Sierpinski].  x  \mleq{}  \mtop{}



Date html generated: 2019_10_31-AM-06_36_08
Last ObjectModification: 2017_07_28-AM-09_12_03

Theory : synthetic!topology


Home Index