Nuprl Lemma : sp-le-top
∀[x:Sierpinski]. x ≤ ⊤
Proof
Definitions occuring in Statement : 
sp-le: x ≤ y
, 
Sierpinski: Sierpinski
, 
Sierpinski-top: ⊤
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
sp-le: x ≤ y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal-wf-T-base, 
Sierpinski_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
baseClosed, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[x:Sierpinski].  x  \mleq{}  \mtop{}
Date html generated:
2019_10_31-AM-06_36_08
Last ObjectModification:
2017_07_28-AM-09_12_03
Theory : synthetic!topology
Home
Index