Nuprl Lemma : ml_apply-sq

[A:Type]. ∀[f:Top]. ∀[x:A].  f(x) supposing valueall-type(A)


Proof




Definitions occuring in Statement :  ml_apply: f(x) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ml_apply: f(x) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall evalall-reduce valueall-type_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis callbyvalueReduce because_Cache sqequalAxiom cumulativity isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:Top].  \mforall{}[x:A].    f(x)  \msim{}  f  x  supposing  valueall-type(A)



Date html generated: 2017_09_29-PM-05_50_47
Last ObjectModification: 2017_05_19-PM-05_05_01

Theory : ML


Home Index