Nuprl Lemma : ml_apply-sqle
∀[f,x:Base].  f(x) ≤ f x supposing ¬is-exception(f(x))
Proof
Definitions occuring in Statement : 
ml_apply: f(x)
, 
is-exception: is-exception(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
apply: f a
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ml_apply: f(x)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
not_wf, 
base_wf, 
has-valueall-if-has-value-callbyvalueall, 
evalall-sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
divergentSqle, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
axiomSqleEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
callbyvalueReduce, 
sqleReflexivity
Latex:
\mforall{}[f,x:Base].    f(x)  \mleq{}  f  x  supposing  \mneg{}is-exception(f(x))
Date html generated:
2017_09_29-PM-05_50_48
Last ObjectModification:
2017_05_22-PM-01_46_39
Theory : ML
Home
Index