Nuprl Lemma : ml_apply-sqle

[f,x:Base].  f(x) ≤ supposing ¬is-exception(f(x))


Proof




Definitions occuring in Statement :  ml_apply: f(x) is-exception: is-exception(t) uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ml_apply: f(x) not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] callbyvalueall: callbyvalueall has-valueall: has-valueall(a) has-value: (a)↓
Lemmas referenced :  has-value_wf_base is-exception_wf not_wf base_wf has-valueall-if-has-value-callbyvalueall evalall-sqequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut divergentSqle sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination extract_by_obid isectElimination sqequalRule baseApply closedConclusion baseClosed hypothesisEquality axiomSqleEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination callbyvalueReduce sqleReflexivity

Latex:
\mforall{}[f,x:Base].    f(x)  \mleq{}  f  x  supposing  \mneg{}is-exception(f(x))



Date html generated: 2017_09_29-PM-05_50_48
Last ObjectModification: 2017_05_22-PM-01_46_39

Theory : ML


Home Index