Nuprl Lemma : lt_transitivity_1
∀[i,j,k:ℤ].  (i < k) supposing ((j ≤ k) and i < j)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
less_than_transitivity1, 
le_wf, 
member-less_than, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[i,j,k:\mBbbZ{}].    (i  <  k)  supposing  ((j  \mleq{}  k)  and  i  <  j)
Date html generated:
2016_05_13-PM-03_30_43
Last ObjectModification:
2015_12_26-AM-09_46_33
Theory : arithmetic
Home
Index