Nuprl Lemma : sequence_subtype
∀[A,B:Type].  sequence(A) ⊆r sequence(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
sequence: sequence(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sequence: sequence(T)
Lemmas referenced : 
subtype_rel_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
nat_wf, 
subtype_rel_product
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
axiomEquality, 
lambdaFormation, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
functionEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[A,B:Type].    sequence(A)  \msubseteq{}r  sequence(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2018_07_25-PM-01_29_34
Last ObjectModification:
2018_06_18-PM-10_51_19
Theory : arithmetic
Home
Index