Nuprl Lemma : zero-add-base
∀[x:Base]. 0 + x ~ x supposing (x)↓ 
⇒ (x ∈ ℤ)
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
zero-add, 
base_wf, 
equal-wf-base, 
is-exception_wf, 
has-value_wf_base, 
int-value-type, 
value-type-has-value, 
exception-not-value, 
zero-add-sqle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
divergentSqle, 
callbyvalueAdd, 
sqequalHypSubstitution, 
hypothesis, 
thin, 
baseClosed, 
sqequalRule, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
addExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
independent_isectElimination, 
intEquality, 
independent_functionElimination, 
voidElimination, 
sqequalAxiom, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:Base].  0  +  x  \msim{}  x  supposing  (x)\mdownarrow{}  {}\mRightarrow{}  (x  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_13-PM-03_29_02
Last ObjectModification:
2016_01_14-PM-06_41_52
Theory : arithmetic
Home
Index