Nuprl Lemma : set-member_wf
∀[T:Type]. ∀[s:P(T)]. ∀[x:T].  ((x ∈ s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
set-member: (x ∈ s)
, 
power-set: P(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set-member: (x ∈ s)
, 
power-set: P(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
equal_wf, 
power-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s:P(T)].  \mforall{}[x:T].    ((x  \mmember{}  s)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_51_37
Last ObjectModification:
2015_12_26-AM-10_17_18
Theory : bar-induction
Home
Index