Nuprl Lemma : set-member_wf

[T:Type]. ∀[s:P(T)]. ∀[x:T].  ((x ∈ s) ∈ ℙ)


Proof




Definitions occuring in Statement :  set-member: (x ∈ s) power-set: P(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T set-member: (x ∈ s) power-set: P(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf equal_wf power-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution hypothesisEquality lemma_by_obid isectElimination thin lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:P(T)].  \mforall{}[x:T].    ((x  \mmember{}  s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_51_37
Last ObjectModification: 2015_12_26-AM-10_17_18

Theory : bar-induction


Home Index