Nuprl Lemma : FAN_wf

[X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ]
  ∀[d:∀n:ℕ. ∀s:ℕn ⟶ 𝔹.  Dec(X[n;s])]. (FAN(d) ∈ {k:ℕ| ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f]} supposing ∀f:ℕ ⟶ 𝔹(↓∃n:ℕX[n;f])


Proof




Definitions occuring in Statement :  FAN: FAN(d) int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a sq_exists: x:A [B[x]] FAN: FAN(d) bar_recursion: bar_recursion simple_fan_theorem'-ext member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q so_apply: x[s1;s2] exists: x:A. B[x] prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  simple_fan_theorem'-ext istype-nat bool_wf squash_wf nat_wf int_seg_wf decidable_wf int_seg_subtype_nat istype-false subtype_rel_function subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalRule applyEquality cut thin instantiate extract_by_obid hypothesis Error :lambdaEquality_alt,  isectElimination hypothesisEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalHypSubstitution rename Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :isectIsType,  Error :functionIsType,  introduction Error :universeIsType,  productEquality because_Cache natural_numberEquality setElimination Error :setIsType,  Error :productIsType,  independent_isectElimination independent_pairFormation productElimination universeEquality

Latex:
\mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}[d:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    Dec(X[n;s])].  (FAN(d)  \mmember{}  \{k:\mBbbN{}|  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f]\}  ) 
    supposing  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  X[n;f])



Date html generated: 2019_06_20-AM-11_33_05
Last ObjectModification: 2019_01_27-PM-01_40_00

Theory : bool_1


Home Index