Nuprl Lemma : bool_sim_true
∀[b:𝔹]. b ~ tt supposing b = tt
Proof
Definitions occuring in Statement :
btrue: tt
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
prop: ℙ
Lemmas referenced :
subtype_base_sq,
bool_wf,
bool_subtype_base,
equal_wf,
btrue_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesis,
independent_isectElimination,
dependent_functionElimination,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
sqequalAxiom,
sqequalRule,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[b:\mBbbB{}]. b \msim{} tt supposing b = tt
Date html generated:
2016_05_13-PM-03_55_24
Last ObjectModification:
2015_12_26-AM-10_53_12
Theory : bool_1
Home
Index