Nuprl Lemma : has-value-bnot

[a:Base]. (a)↓ supposing ba)↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ bnot: ¬bb uimplies: supposing a uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bnot: ¬bb ifthenelse: if then else fi  has-value: (a)↓ prop:
Lemmas referenced :  base_wf has-value_wf_base top_wf union-value-type value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution callbyvalueDecide hypothesis lemma_by_obid isectElimination thin because_Cache independent_isectElimination sqequalRule axiomSqleEquality baseApply closedConclusion baseClosed hypothesisEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:Base].  (a)\mdownarrow{}  supposing  (\mneg{}\msubb{}a)\mdownarrow{}



Date html generated: 2016_05_13-PM-03_59_57
Last ObjectModification: 2016_01_14-PM-07_21_14

Theory : bool_1


Home Index