Nuprl Lemma : ifthenelse-wf
∀[b:𝔹]. ∀[A:Type]. ∀[p:⋂v:↑b. A]. ∀[q:⋂v:¬↑b. A].  (if b then p else q fi  ∈ A)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
isect: ⋂x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
bool: 𝔹
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
true: True
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
not_wf, 
assert_wf, 
bool_wf, 
false_wf
Rules used in proof : 
Error :isectIsType, 
Error :universeIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectEquality, 
because_Cache, 
universeEquality, 
Error :isect_memberFormation_alt, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
unionElimination, 
natural_numberEquality, 
lemma_by_obid, 
lambdaEquality
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[A:Type].  \mforall{}[p:\mcap{}v:\muparrow{}b.  A].  \mforall{}[q:\mcap{}v:\mneg{}\muparrow{}b.  A].    (if  b  then  p  else  q  fi    \mmember{}  A)
Date html generated:
2019_06_20-AM-11_30_58
Last ObjectModification:
2018_09_26-AM-11_29_27
Theory : bool_1
Home
Index