Nuprl Lemma : ifthenelse-wf

[b:𝔹]. ∀[A:Type]. ∀[p:⋂v:↑b. A]. ∀[q:⋂v:¬↑b. A].  (if then else fi  ∈ A)


Proof




Definitions occuring in Statement :  assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] not: ¬A member: t ∈ T isect: x:A. B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] prop: bool: 𝔹 ifthenelse: if then else fi  assert: b true: True implies:  Q not: ¬A
Lemmas referenced :  not_wf assert_wf bool_wf false_wf
Rules used in proof :  Error :isectIsType,  Error :universeIsType,  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isectEquality because_Cache universeEquality Error :isect_memberFormation_alt,  sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality unionElimination natural_numberEquality lemma_by_obid lambdaEquality

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[A:Type].  \mforall{}[p:\mcap{}v:\muparrow{}b.  A].  \mforall{}[q:\mcap{}v:\mneg{}\muparrow{}b.  A].    (if  b  then  p  else  q  fi    \mmember{}  A)



Date html generated: 2019_06_20-AM-11_30_58
Last ObjectModification: 2018_09_26-AM-11_29_27

Theory : bool_1


Home Index