Nuprl Lemma : isect_prod_lemma

[A,B,C:Type].  (A × B ⋂ A × C ⊆(A × B ⋂ C))


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 subtype_rel: A ⊆B uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff prop: pi2: snd(t) pi1: fst(t) implies:  Q all: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T
Lemmas referenced :  equal_wf isect2_decomp isect2_wf
Rules used in proof :  independent_pairEquality Error :lambdaFormation_alt,  Error :equalityIstype,  Error :isect_memberEquality_alt,  unionElimination equalityElimination because_Cache independent_functionElimination dependent_functionElimination sqequalRule lambdaFormation productElimination equalityTransitivity equalitySymmetry independent_pairFormation sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaEquality_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B,C:Type].    (A  \mtimes{}  B  \mcap{}  A  \mtimes{}  C  \msubseteq{}r  (A  \mtimes{}  B  \mcap{}  C))



Date html generated: 2019_06_20-PM-01_04_51
Last ObjectModification: 2019_06_20-PM-01_00_45

Theory : bool_1


Home Index