Nuprl Lemma : cbv-reduce-strict
∀[F,a,B:Base].
  F[eval x = a in
    B[x]] ≤ F[B[a]] 
  supposing (∀x:Base. ((F[x])↓ 
⇒ (x)↓))
  ∧ (∀u,v,x:Base.  ((F[x] ~ exception(u; v)) 
⇒ (↓(x ~ exception(u; v)) ∨ (x)↓)))
  ∧ (∀u,v:Base.  (B[exception(u; v)] ~ exception(u; v)))
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
callbyvalue: callbyvalue, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
base: Base
, 
sqle: s ≤ t
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uimplies: b supposing a
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
has-value: (a)↓
, 
squash: ↓T
, 
top: Top
, 
is-exception: is-exception(t)
Lemmas referenced : 
bottom-sqle, 
has-value_wf_base, 
is-exception_wf, 
all_wf, 
base_wf, 
squash_wf, 
or_wf, 
sqequal-wf-base
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
axiomSqleEquality, 
introduction, 
isect_memberFormation, 
sqequalIntensionalEquality, 
because_Cache, 
functionEquality, 
lambdaEquality, 
productEquality, 
hypothesis, 
hypothesisEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalRule, 
isectElimination, 
lemma_by_obid, 
cut, 
divergentSqle, 
thin, 
productElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
sqleReflexivity, 
callbyvalueReduce, 
callbyvalueCallbyvalue, 
independent_functionElimination, 
dependent_functionElimination, 
exceptionSqequal, 
imageElimination, 
unionElimination, 
callbyvalueExceptionCases, 
voidEquality, 
voidElimination, 
sqleRule
Latex:
\mforall{}[F,a,B:Base].
    F[eval  x  =  a  in
        B[x]]  \mleq{}  F[B[a]] 
    supposing  (\mforall{}x:Base.  ((F[x])\mdownarrow{}  {}\mRightarrow{}  (x)\mdownarrow{}))
    \mwedge{}  (\mforall{}u,v,x:Base.    ((F[x]  \msim{}  exception(u;  v))  {}\mRightarrow{}  (\mdownarrow{}(x  \msim{}  exception(u;  v))  \mvee{}  (x)\mdownarrow{})))
    \mwedge{}  (\mforall{}u,v:Base.    (B[exception(u;  v)]  \msim{}  exception(u;  v)))
Date html generated:
2019_06_20-AM-11_20_42
Last ObjectModification:
2018_10_15-PM-03_28_17
Theory : call!by!value_1
Home
Index