Nuprl Lemma : ex-sqle_transitivity
∀[e:Atom2]. ∀[a,b,c:Base].  (ex-sqle(e;a;c)) supposing (ex-sqle(e;b;c) and ex-sqle(e;a;b))
Proof
Definitions occuring in Statement : 
ex-sqle: ex-sqle(e;t;t')
, 
atom: Atom$n
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ex-sqle: ex-sqle(e;t;t')
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Lemmas referenced : 
ex-sqle_wf, 
base_wf, 
sqle_trans, 
atom2_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
axiomSqleEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
atomnEquality, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_functionElimination
Latex:
\mforall{}[e:Atom2].  \mforall{}[a,b,c:Base].    (ex-sqle(e;a;c))  supposing  (ex-sqle(e;b;c)  and  ex-sqle(e;a;b))
Date html generated:
2017_02_20-AM-10_46_43
Last ObjectModification:
2017_01_25-PM-05_03_23
Theory : call!by!value_1
Home
Index