Nuprl Lemma : has-value-try-iff

[t,n,B:Base].
  uiff((t?n:v.B[v])↓;↓((t)↓ ∧ (t?n:v.B[v] t)) ∨ (∃u:Base. ((t exception(n; u)) ∧ (t?n:v.B[v] B[u]) ∧ (B[u])↓)))


Proof




Definitions occuring in Statement :  has-value: (a)↓ uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] squash: T or: P ∨ Q and: P ∧ Q base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: has-value: (a)↓ sq_stable: SqStable(P) implies:  Q or: P ∨ Q exists: x:A. B[x]
Lemmas referenced :  has-value-try has-value_wf_base squash_wf or_wf exists_wf base_wf sq_stable__has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule baseApply closedConclusion baseClosed independent_isectElimination hypothesis imageElimination imageMemberEquality axiomSqleEquality productEquality sqequalIntensionalEquality lambdaEquality productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_functionElimination unionElimination

Latex:
\mforall{}[t,n,B:Base].
    uiff((t?n:v.B[v])\mdownarrow{};\mdownarrow{}((t)\mdownarrow{}  \mwedge{}  (t?n:v.B[v]  \msim{}  t))
                                            \mvee{}  (\mexists{}u:Base.  ((t  \msim{}  exception(n;  u))  \mwedge{}  (t?n:v.B[v]  \msim{}  B[u])  \mwedge{}  (B[u])\mdownarrow{})))



Date html generated: 2017_02_20-AM-10_46_27
Last ObjectModification: 2017_01_25-PM-07_01_20

Theory : call!by!value_1


Home Index