Nuprl Lemma : has-value-try

[t,n,B:Base].
  ↓((t)↓ ∧ (t?n:v.B[v] t)) ∨ (∃u:Base. ((t exception(n; u)) ∧ (t?n:v.B[v] B[u]) ∧ (B[u])↓)) 
  supposing (t?n:v.B[v])↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] squash: T or: P ∨ Q and: P ∧ Q base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q and: P ∧ Q cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T guard: {T} exists: x:A. B[x] has-value: (a)↓ decidable: Dec(P) all: x:A. B[x] rev_implies:  Q not: ¬A iff: ⇐⇒ Q false: False assert: b ifthenelse: if then else fi  bnot: ¬bb bfalse: ff uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q sq_type: SQType(T)
Lemmas referenced :  exists_wf base_wf has-value_wf_base decidable__atom_equal_2 assert_of_bnot iff_weakening_uiff equal-wf-base not_wf bnot_wf assert_wf iff_transitivity bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_atom2 eqtt_to_assert bool_wf eq_atom_wf2 atom2_subtype_base subtype_base_sq not-exception-has-value
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction callbyvalueTry hypothesis inlFormation independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality sqequalIntensionalEquality hypothesisEquality baseApply closedConclusion baseClosed imageMemberEquality inrFormation dependent_pairFormation because_Cache imageElimination isect_memberEquality equalityTransitivity equalitySymmetry unionElimination independent_isectElimination productElimination callbyvalueAtomnEq atomn_eqReduceTrueSq dependent_functionElimination impliesFunctionality voidElimination promote_hyp equalityElimination lambdaFormation independent_functionElimination atomnEquality cumulativity instantiate atomn_eqReduceFalseSq

Latex:
\mforall{}[t,n,B:Base].
    \mdownarrow{}((t)\mdownarrow{}  \mwedge{}  (t?n:v.B[v]  \msim{}  t))  \mvee{}  (\mexists{}u:Base.  ((t  \msim{}  exception(n;  u))  \mwedge{}  (t?n:v.B[v]  \msim{}  B[u])  \mwedge{}  (B[u])\mdownarrow{})) 
    supposing  (t?n:v.B[v])\mdownarrow{}



Date html generated: 2019_06_20-AM-11_21_48
Last ObjectModification: 2018_08_04-PM-02_10_07

Theory : call!by!value_1


Home Index