Nuprl Lemma : assert_of_eq_atom2

[x,y:Atom2].  uiff(↑=a2 y;x y ∈ Atom2)


Proof




Definitions occuring in Statement :  eq_atom: eq_atom$n(x;y) atom: Atom$n assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: assert: b ifthenelse: if then else fi  all: x:A. B[x] implies:  Q bool: 𝔹 true: True false: False subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q bfalse: ff eq_atom: eq_atom$n(x;y) not: ¬A btrue: tt
Lemmas referenced :  assert_wf eq_atom_wf2 bool_wf true_wf false_wf equal_wf equal-wf-base atom2_subtype_base decidable__atom_equal_2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaFormation unionElimination axiomEquality equalityTransitivity equalitySymmetry voidElimination dependent_functionElimination independent_functionElimination atomnEquality applyEquality productElimination independent_pairEquality isect_memberEquality because_Cache atomn_eqReduceFalseSq natural_numberEquality atomn_eqReduceTrueSq

Latex:
\mforall{}[x,y:Atom2].    uiff(\muparrow{}x  =a2  y;x  =  y)



Date html generated: 2017_04_14-AM-07_14_34
Last ObjectModification: 2017_02_27-PM-02_50_11

Theory : atom_1


Home Index