Nuprl Lemma : has-value-wf-value-type
∀[T:Type]. ∀[a:T]. ((a)↓ ∈ ℙ) supposing value-type(T)
Proof
Definitions occuring in Statement : 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
Lemmas referenced : 
value-type_wf, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqequalRule, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
divergentSqle, 
sqleReflexivity, 
baseClosed, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(T)
Date html generated:
2016_05_13-PM-03_25_12
Last ObjectModification:
2016_01_14-PM-06_44_55
Theory : call!by!value_1
Home
Index