Nuprl Lemma : has-value-wf-value-type

[T:Type]. ∀[a:T]. ((a)↓ ∈ ℙsupposing value-type(T)


Proof




Definitions occuring in Statement :  value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓
Lemmas referenced :  value-type_wf sqle_wf_base is-exception_wf has-value_wf_base value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqequalRule callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis divergentSqle sqleReflexivity baseClosed because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(T)



Date html generated: 2016_05_13-PM-03_25_12
Last ObjectModification: 2016_01_14-PM-06_44_55

Theory : call!by!value_1


Home Index