Nuprl Lemma : isaxiom-sqequal

[C:Base]
  ∀[A,B,z:Base].
    if Ax then otherwise 
    supposing (A Ax Ax) ∧ ((∀a,b:Base.  (if Ax then otherwise b))  (B z)) 
  supposing strict(C)


Proof




Definitions occuring in Statement :  strict: strict(F) uimplies: supposing a uall: [x:A]. B[x] isaxiom: if Ax then otherwise b all: x:A. B[x] implies:  Q and: P ∧ Q apply: a base: Base sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} strict: strict(F)
Lemmas referenced :  strict_wf base_wf all_wf and_wf is-exception_wf has-value_wf_base has-value-implies-dec-isaxiom-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle divergentSqle callbyvalueIsaxiom sqequalHypSubstitution hypothesis productElimination thin lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqequalRule sqleReflexivity baseApply closedConclusion baseClosed lambdaFormation because_Cache isaxiomExceptionCases axiomSqleEquality isectElimination callbyvalueApply applyExceptionCases sqequalAxiom sqequalIntensionalEquality functionEquality lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry exceptionSqequal

Latex:
\mforall{}[C:Base]
    \mforall{}[A,B,z:Base].
        if  z  =  Ax  then  A  z  otherwise  B  z  \msim{}  C  z 
        supposing  (A  Ax  \msim{}  C  Ax)  \mwedge{}  ((\mforall{}a,b:Base.    (if  z  =  Ax  then  a  otherwise  b  \msim{}  b))  {}\mRightarrow{}  (B  z  \msim{}  C  z)) 
    supposing  strict(C)



Date html generated: 2016_05_13-PM-03_24_08
Last ObjectModification: 2016_01_14-PM-06_46_29

Theory : call!by!value_1


Home Index