Nuprl Lemma : ispair-pair

[t,x,y:Base].  t ∈ Top × Top supposing if is pair then inl otherwise inr y  inl x


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] top: Top ispair: if is pair then otherwise b member: t ∈ T product: x:A × B[x] inr: inr  inl: inl x base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ implies:  Q top: Top false: False
Lemmas referenced :  not_zero_sqequal_one base_wf top_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalRule divergentSqle sqleReflexivity lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed callbyvalueIspair ispairCases hypothesisEquality lambdaFormation independent_pairEquality isect_memberEquality voidElimination voidEquality sqequalIntensionalEquality baseApply closedConclusion sqequalAxiom because_Cache independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality addLevel levelHypothesis promote_hyp

Latex:
\mforall{}[t,x,y:Base].    t  \mmember{}  Top  \mtimes{}  Top  supposing  if  t  is  a  pair  then  inl  x  otherwise  inr  y    \msim{}  inl  x



Date html generated: 2016_05_13-PM-03_22_00
Last ObjectModification: 2016_01_14-PM-06_47_20

Theory : call!by!value_1


Home Index