Nuprl Lemma : ispair-pair
∀[t,x,y:Base].  t ∈ Top × Top supposing if t is a pair then inl x otherwise inr y  ~ inl x
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
ispair: if z is a pair then a otherwise b
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
inr: inr x 
, 
inl: inl x
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
top: Top
, 
false: False
Lemmas referenced : 
not_zero_sqequal_one, 
base_wf, 
top_wf, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
divergentSqle, 
sqleReflexivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
callbyvalueIspair, 
ispairCases, 
hypothesisEquality, 
lambdaFormation, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
sqequalAxiom, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
addLevel, 
levelHypothesis, 
promote_hyp
Latex:
\mforall{}[t,x,y:Base].    t  \mmember{}  Top  \mtimes{}  Top  supposing  if  t  is  a  pair  then  inl  x  otherwise  inr  y    \msim{}  inl  x
Date html generated:
2016_05_13-PM-03_22_00
Last ObjectModification:
2016_01_14-PM-06_47_20
Theory : call!by!value_1
Home
Index