Nuprl Lemma : ispair-sqequal
∀[C:Base]
  ∀[A,B,z:Base].
    if z is a pair then A z otherwise B z ~ C z 
    supposing ((z ~ <fst(z), snd(z)>) 
⇒ (A <fst(z), snd(z)> ~ C <fst(z), snd(z)>))
    ∧ ((∀a,b:Base.  (if z is a pair then a otherwise b ~ b)) 
⇒ (B z ~ C z)) 
  supposing strict(C)
Proof
Definitions occuring in Statement : 
strict: strict(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
ispair: if z is a pair then a otherwise b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
pair: <a, b>
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
strict: strict(F)
Lemmas referenced : 
strict_wf, 
base_wf, 
all_wf, 
and_wf, 
is-exception_wf, 
has-value_wf_base, 
has-value-implies-dec-ispair-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
divergentSqle, 
callbyvalueIspair, 
sqequalHypSubstitution, 
hypothesis, 
productElimination, 
thin, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
sqequalRule, 
sqleReflexivity, 
isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaFormation, 
because_Cache, 
ispairExceptionCases, 
axiomSqleEquality, 
callbyvalueApply, 
applyExceptionCases, 
sqequalAxiom, 
functionEquality, 
sqequalIntensionalEquality, 
lambdaEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
exceptionSqequal
Latex:
\mforall{}[C:Base]
    \mforall{}[A,B,z:Base].
        if  z  is  a  pair  then  A  z  otherwise  B  z  \msim{}  C  z 
        supposing  ((z  \msim{}  <fst(z),  snd(z)>)  {}\mRightarrow{}  (A  <fst(z),  snd(z)>  \msim{}  C  <fst(z),  snd(z)>))
        \mwedge{}  ((\mforall{}a,b:Base.    (if  z  is  a  pair  then  a  otherwise  b  \msim{}  b))  {}\mRightarrow{}  (B  z  \msim{}  C  z)) 
    supposing  strict(C)
Date html generated:
2016_05_13-PM-03_24_03
Last ObjectModification:
2016_01_14-PM-06_47_01
Theory : call!by!value_1
Home
Index