Nuprl Lemma : l-strict_wf
∀[F:Base]. (l-strict(F) ∈ ℙ)
Proof
Definitions occuring in Statement : 
l-strict: l-strict(F)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l-strict: l-strict(F)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
strict_wf, 
exists_wf, 
sqequal-wf-base, 
or_wf, 
has-value_wf_base, 
base_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
because_Cache, 
functionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
sqequalIntensionalEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[F:Base].  (l-strict(F)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_23_59
Last ObjectModification:
2016_01_14-PM-06_45_40
Theory : call!by!value_1
Home
Index