Nuprl Lemma : l-strict_wf

[F:Base]. (l-strict(F) ∈ ℙ)


Proof




Definitions occuring in Statement :  l-strict: l-strict(F) uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l-strict: l-strict(F) so_lambda: λ2x.t[x] prop: and: P ∧ Q implies:  Q so_apply: x[s] all: x:A. B[x] or: P ∨ Q exists: x:A. B[x]
Lemmas referenced :  strict_wf exists_wf sqequal-wf-base or_wf has-value_wf_base base_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality because_Cache functionEquality baseApply closedConclusion baseClosed hypothesisEquality sqequalIntensionalEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Base].  (l-strict(F)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_23_59
Last ObjectModification: 2016_01_14-PM-06_45_40

Theory : call!by!value_1


Home Index