Nuprl Lemma : not-axiom-member-int
¬(Ax ∈ ℤ)
Proof
Definitions occuring in Statement : 
not: ¬A, 
member: t ∈ T, 
int: ℤ, 
axiom: Ax
Definitions unfolded in proof : 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
all: ∀x:A. B[x], 
false: False
Lemmas referenced : 
equal-wf-base, 
isaxiom-implies-not-isint, 
value-type-has-value, 
int-value-type, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
baseClosed, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_functionElimination, 
isintReduceTrue, 
hypothesisEquality, 
dependent_functionElimination, 
voidElimination
Latex:
\mneg{}(Ax  \mmember{}  \mBbbZ{})
Date html generated:
2017_04_14-AM-07_15_51
Last ObjectModification:
2017_02_27-PM-02_50_58
Theory : call!by!value_1
Home
Index