Nuprl Lemma : not-axiom-member-int

¬(Ax ∈ ℤ)


Proof




Definitions occuring in Statement :  not: ¬A member: t ∈ T int: axiom: Ax
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: uimplies: supposing a assert: b ifthenelse: if then else fi  btrue: tt true: True all: x:A. B[x] false: False
Lemmas referenced :  equal-wf-base isaxiom-implies-not-isint value-type-has-value int-value-type equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality baseClosed because_Cache hypothesis independent_isectElimination equalityTransitivity equalitySymmetry natural_numberEquality independent_functionElimination isintReduceTrue hypothesisEquality dependent_functionElimination voidElimination

Latex:
\mneg{}(Ax  \mmember{}  \mBbbZ{})



Date html generated: 2017_04_14-AM-07_15_51
Last ObjectModification: 2017_02_27-PM-02_50_58

Theory : call!by!value_1


Home Index