Nuprl Lemma : canonicalizable-set

[T:Type]. ∀[B:T ⟶ Type].  (canonicalizable(T)  canonicalizable({x:T| B[x]} ))


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) uall: [x:A]. B[x] so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q canonicalizable: canonicalizable(T) exists: x:A. B[x] member: t ∈ T so_apply: x[s] all: x:A. B[x] uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T true: True subtype_rel: A ⊆B prop:
Lemmas referenced :  iff_weakening_equal equal_wf canonicalizable_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt functionExtensionality applyEquality hypothesisEquality setElimination rename cut hypothesis setEquality dependent_functionElimination introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination dependent_set_memberEquality_alt lambdaEquality_alt imageElimination because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed universeIsType setIsType functionIsType equalityIstype sqequalBase inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].    (canonicalizable(T)  {}\mRightarrow{}  canonicalizable(\{x:T|  B[x]\}  ))



Date html generated: 2020_05_19-PM-09_35_49
Last ObjectModification: 2020_01_04-PM-07_56_39

Theory : call!by!value_2


Home Index