Nuprl Lemma : canonicalizable-set
∀[T:Type]. ∀[B:T ⟶ Type].  (canonicalizable(T) ⇒ canonicalizable({x:T| B[x]} ))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
canonicalizable: canonicalizable(T), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
so_apply: x[s], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
iff_weakening_equal, 
equal_wf, 
canonicalizable_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
cut, 
hypothesis, 
setEquality, 
dependent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
setIsType, 
functionIsType, 
equalityIstype, 
sqequalBase, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].    (canonicalizable(T)  {}\mRightarrow{}  canonicalizable(\{x:T|  B[x]\}  ))
Date html generated:
2020_05_19-PM-09_35_49
Last ObjectModification:
2020_01_04-PM-07_56_39
Theory : call!by!value_2
Home
Index