Nuprl Lemma : no-excluded-middle

¬(∀P:ℙ(P ∨ P)))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  not: ¬A implies:  Q all: x:A. B[x] member: t ∈ T false: False prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] or: P ∨ Q so_apply: x[s] guard: {T}
Lemmas referenced :  not_has-value_decidable_on_base base_wf all_wf or_wf not_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut lemma_by_obid sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination instantiate isectElimination universeEquality sqequalRule lambdaEquality cumulativity hypothesisEquality dependent_functionElimination

Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  (P  \mvee{}  (\mneg{}P)))



Date html generated: 2016_05_13-PM-03_46_00
Last ObjectModification: 2015_12_26-AM-09_58_45

Theory : call!by!value_2


Home Index