Nuprl Lemma : pi12-sqle-spread

[t:Top]. ∀[P:Base].  P[fst(t);snd(t)] ≤ let x,y in P[x;y] supposing strict4(λx,y,z,w. P[x;y])


Proof




Definitions occuring in Statement :  strict4: strict4(F) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) lambda: λx.A[x] spread: spread def base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a pi1: fst(t) prop: top: Top has-value: (a)↓ pi2: snd(t) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  lifting-strict-spread is-exception_wf has-value_wf_base pair-eta top_wf base_wf strict4_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut axiomSqleEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry voidElimination voidEquality sqleRule divergentSqle callbyvalueSpread sqleReflexivity spreadExceptionCases exceptionSqequal independent_isectElimination

Latex:
\mforall{}[t:Top].  \mforall{}[P:Base].    P[fst(t);snd(t)]  \mleq{}  let  x,y  =  t  in  P[x;y]  supposing  strict4(\mlambda{}x,y,z,w.  P[x;y])



Date html generated: 2016_05_13-PM-03_46_28
Last ObjectModification: 2016_01_14-PM-07_11_05

Theory : call!by!value_2


Home Index