Nuprl Lemma : spread-ispair-spread

[t,B:Top].  (let x,y in B[x;y] if is pair then let x,y in B[x;y] otherwise ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] ispair: if is pair then otherwise b spread: spread def sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q top: Top
Lemmas referenced :  bottom-sqle top_wf has-value-implies-dec-ispair-2 is-exception_wf has-value_wf_base pair-eta
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueSpread sqequalHypSubstitution hypothesis lemma_by_obid isectElimination equalityTransitivity equalitySymmetry sqequalRule sqleReflexivity baseApply closedConclusion baseClosed hypothesisEquality spreadExceptionCases axiomSqleEquality exceptionSqequal callbyvalueIspair dependent_functionElimination independent_functionElimination unionElimination lambdaFormation isect_memberEquality voidElimination voidEquality ispairExceptionCases sqequalAxiom because_Cache

Latex:
\mforall{}[t,B:Top].    (let  x,y  =  t  in  B[x;y]  \msim{}  if  t  is  a  pair  then  let  x,y  =  t  in  B[x;y]  otherwise  \mbot{})



Date html generated: 2016_05_13-PM-03_46_27
Last ObjectModification: 2016_01_14-PM-07_11_11

Theory : call!by!value_2


Home Index