Nuprl Lemma : spread-ispair-spread
∀[t,B:Top].  (let x,y = t in B[x;y] ~ if t is a pair then let x,y = t in B[x;y] otherwise ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
ispair: if z is a pair then a otherwise b
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
top: Top
Lemmas referenced : 
bottom-sqle, 
top_wf, 
has-value-implies-dec-ispair-2, 
is-exception_wf, 
has-value_wf_base, 
pair-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueSpread, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
spreadExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
callbyvalueIspair, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
ispairExceptionCases, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[t,B:Top].    (let  x,y  =  t  in  B[x;y]  \msim{}  if  t  is  a  pair  then  let  x,y  =  t  in  B[x;y]  otherwise  \mbot{})
Date html generated:
2016_05_13-PM-03_46_27
Last ObjectModification:
2016_01_14-PM-07_11_11
Theory : call!by!value_2
Home
Index