Nuprl Lemma : spread-sq-pi12
∀[t:Top]. ∀[P:Base].  P[fst(t);snd(t)] ~ let x,y = t in P[x;y] supposing strict4(λx,y,z,w. P[x;y])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
lambda: λx.A[x]
, 
spread: spread def, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
strict4: strict4(F)
, 
and: P ∧ Q
Lemmas referenced : 
top_wf, 
base_wf, 
strict4_wf, 
spread-sqle-pi12, 
pi12-sqle-spread
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
lambdaFormation, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination
Latex:
\mforall{}[t:Top].  \mforall{}[P:Base].    P[fst(t);snd(t)]  \msim{}  let  x,y  =  t  in  P[x;y]  supposing  strict4(\mlambda{}x,y,z,w.  P[x;y])
Date html generated:
2016_05_13-PM-03_46_32
Last ObjectModification:
2016_01_14-PM-07_11_03
Theory : call!by!value_2
Home
Index