Nuprl Lemma : spread-sq-pi12

[t:Top]. ∀[P:Base].  P[fst(t);snd(t)] let x,y in P[x;y] supposing strict4(λx,y,z,w. P[x;y])


Proof




Definitions occuring in Statement :  strict4: strict4(F) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) lambda: λx.A[x] spread: spread def base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] prop: strict4: strict4(F) and: P ∧ Q
Lemmas referenced :  top_wf base_wf strict4_wf spread-sqle-pi12 pi12-sqle-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule baseApply closedConclusion baseClosed independent_isectElimination hypothesis because_Cache lambdaFormation sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry productElimination dependent_functionElimination

Latex:
\mforall{}[t:Top].  \mforall{}[P:Base].    P[fst(t);snd(t)]  \msim{}  let  x,y  =  t  in  P[x;y]  supposing  strict4(\mlambda{}x,y,z,w.  P[x;y])



Date html generated: 2016_05_13-PM-03_46_32
Last ObjectModification: 2016_01_14-PM-07_11_03

Theory : call!by!value_2


Home Index