Nuprl Lemma : accessible-inversion

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[u:T].  ∀v:T. (accessible(T;x,y.R[x;y];u)  R[v;u]  accessible(T;x,y.R[x;y];v))


Proof




Definitions occuring in Statement :  accessible: accessible(T;x,y.R[x; y];t) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q all: x:A. B[x] implies:  Q prop: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y]
Lemmas referenced :  accessible-iff accessible_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination lambdaFormation independent_functionElimination dependent_functionElimination applyEquality sqequalRule lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[u:T].
    \mforall{}v:T.  (accessible(T;x,y.R[x;y];u)  {}\mRightarrow{}  R[v;u]  {}\mRightarrow{}  accessible(T;x,y.R[x;y];v))



Date html generated: 2016_05_14-AM-06_18_44
Last ObjectModification: 2015_12_26-PM-00_02_53

Theory : co-recursion


Home Index