Nuprl Lemma : accessible-inversion
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[u:T].  ∀v:T. (accessible(T;x,y.R[x;y];u) 
⇒ R[v;u] 
⇒ accessible(T;x,y.R[x;y];v))
Proof
Definitions occuring in Statement : 
accessible: accessible(T;x,y.R[x; y];t)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
accessible-iff, 
accessible_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[u:T].
    \mforall{}v:T.  (accessible(T;x,y.R[x;y];u)  {}\mRightarrow{}  R[v;u]  {}\mRightarrow{}  accessible(T;x,y.R[x;y];v))
Date html generated:
2016_05_14-AM-06_18_44
Last ObjectModification:
2015_12_26-PM-00_02_53
Theory : co-recursion
Home
Index