Nuprl Lemma : altWind-induction

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[P:altW(A;a.B[a]) ⟶ ℙ].
  ((∀w:altW(A;a.B[a]). ((∀b:coW-dom(a.B[a];w). P[altW-item(w;b)])  P[w]))  (∀w:altW(A;a.B[a]). P[w]))


Proof




Definitions occuring in Statement :  altW-item: altW-item(w;b) altW: altW(A;a.B[a]) coW-dom: coW-dom(a.B[a];w) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  altW: altW(A;a.B[a]) prop: so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  altW-item_wf coW-dom_wf all_wf altW_wf altWind_wf
Rules used in proof :  universeEquality because_Cache setElimination functionEquality cumulativity instantiate hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction rename lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:altW(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}w:altW(A;a.B[a]).  ((\mforall{}b:coW-dom(a.B[a];w).  P[altW-item(w;b)])  {}\mRightarrow{}  P[w]))
    {}\mRightarrow{}  (\mforall{}w:altW(A;a.B[a]).  P[w]))



Date html generated: 2018_07_29-AM-09_22_30
Last ObjectModification: 2018_07_26-PM-09_37_15

Theory : co-recursion


Home Index