Nuprl Lemma : altWind-induction
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[P:altW(A;a.B[a]) ⟶ ℙ].
  ((∀w:altW(A;a.B[a]). ((∀b:coW-dom(a.B[a];w). P[altW-item(w;b)]) 
⇒ P[w])) 
⇒ (∀w:altW(A;a.B[a]). P[w]))
Proof
Definitions occuring in Statement : 
altW-item: altW-item(w;b)
, 
altW: altW(A;a.B[a])
, 
coW-dom: coW-dom(a.B[a];w)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
altW: altW(A;a.B[a])
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
altW-item_wf, 
coW-dom_wf, 
all_wf, 
altW_wf, 
altWind_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
setElimination, 
functionEquality, 
cumulativity, 
instantiate, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
rename, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:altW(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}w:altW(A;a.B[a]).  ((\mforall{}b:coW-dom(a.B[a];w).  P[altW-item(w;b)])  {}\mRightarrow{}  P[w]))
    {}\mRightarrow{}  (\mforall{}w:altW(A;a.B[a]).  P[w]))
Date html generated:
2018_07_29-AM-09_22_30
Last ObjectModification:
2018_07_26-PM-09_37_15
Theory : co-recursion
Home
Index