Nuprl Lemma : bar-converges-not-diverges
∀[T:Type]. ∀[x:bar-base(T)]. ∀[a:T].  (x↓a ⇒ (¬x↑))
Proof
Definitions occuring in Statement : 
bar-diverges: x↑, 
bar-converges: x↓a, 
bar-base: bar-base(T), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
bar-converges: x↓a, 
exists: ∃x:A. B[x], 
bar-diverges: x↑, 
all: ∀x:A. B[x], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
btrue: tt, 
true: True, 
prop: ℙ
Lemmas referenced : 
assert_wf, 
isl_wf, 
unit_wf2, 
bar-diverges_wf, 
bar-converges_wf, 
bar-base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
productElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
sqequalRule, 
voidElimination, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].  \mforall{}[a:T].    (x\mdownarrow{}a  {}\mRightarrow{}  (\mneg{}x\muparrow{}))
Date html generated:
2016_10_21-AM-09_47_26
Last ObjectModification:
2016_07_12-AM-05_07_32
Theory : co-recursion
Home
Index