Nuprl Lemma : bar-converges-not-diverges
∀[T:Type]. ∀[x:bar-base(T)]. ∀[a:T]. (x↓a
⇒ (¬x↑))
Proof
Definitions occuring in Statement :
bar-diverges: x↑
,
bar-converges: x↓a
,
bar-base: bar-base(T)
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
not: ¬A
,
false: False
,
bar-converges: x↓a
,
exists: ∃x:A. B[x]
,
bar-diverges: x↑
,
all: ∀x:A. B[x]
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
isl: isl(x)
,
btrue: tt
,
true: True
,
prop: ℙ
Lemmas referenced :
assert_wf,
isl_wf,
unit_wf2,
bar-diverges_wf,
bar-converges_wf,
bar-base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
thin,
sqequalHypSubstitution,
productElimination,
dependent_functionElimination,
hypothesisEquality,
independent_functionElimination,
hypothesis,
natural_numberEquality,
hyp_replacement,
equalitySymmetry,
Error :applyLambdaEquality,
extract_by_obid,
isectElimination,
cumulativity,
sqequalRule,
voidElimination,
lambdaEquality,
because_Cache,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[x:bar-base(T)]. \mforall{}[a:T]. (x\mdownarrow{}a {}\mRightarrow{} (\mneg{}x\muparrow{}))
Date html generated:
2016_10_21-AM-09_47_26
Last ObjectModification:
2016_07_12-AM-05_07_32
Theory : co-recursion
Home
Index