Nuprl Lemma : bar-equal-equiv

[T:Type]. EquivRel(bar-base(T);x,y.bar-equal(T;x;y))


Proof




Definitions occuring in Statement :  bar-equal: bar-equal(T;x;y) bar-base: bar-base(T) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] bar-equal: bar-equal(T;x;y) equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q member: t ∈ T prop: rev_implies:  Q cand: c∧ B sym: Sym(T;x,y.E[x; y]) so_lambda: λ2x.t[x] so_apply: x[s] trans: Trans(T;x,y.E[x; y]) guard: {T}
Lemmas referenced :  bar-converges_wf bar-base_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule independent_pairFormation lambdaFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache lambdaEquality universeEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  EquivRel(bar-base(T);x,y.bar-equal(T;x;y))



Date html generated: 2016_05_14-AM-06_20_31
Last ObjectModification: 2015_12_26-PM-00_00_39

Theory : co-recursion


Home Index